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INTRODUCTION

The aim of this presentation is to trace the development of the concept of Integration
from the Greek period (about 400 B.C.) to the modern times. The presentation is di-
vided into parts :

1. INTEGRATION IN ANTIQUITY ( 400 B.C. - 200 B.C.)

2. INTEGRATION TILL 18TH CENTURY BEGINNING

3. CONTRIBUTIONS OF CAUCHY (1789 - 1857)

4. CONTRIBUTIONS OF RIEMANN (1826 - 1866)

5. INTEGRATION AFTER RIEMANN

We perceive integration as a mathematical tool related to the physical measurement
of lengths/areas/volumes etc.
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1 INTEGRATION IN ANTIQUITY

Contributors of this period were:

Antiphon (c. 430 B.C.)

Euclid (c. 300 B.C.)

Archimedes (c. 287 - 212 B.C.)

Their main contributions were:

Calculation of Areas and Volumes.

Their main Technique: Principle of Exhaustion

This provided the Greek mathematicians with a method of proving, in an exact way,
results which were already known in some way or other. We give a sample of their work.
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Principle of Exhaustion

Given two unequal magnitudes, from the greater of which is subtracted a magnitude

larger than its half, and from the remainder a magnitude greater than its half removed,

then after a finite number of such operations a quantity is reached which has magnitude

less than that of the smaller of the two original magnitudes.

As an application of this, let us prove the following:

Theorem (Proposition (No. 2, Book XII of Elements)):

Areas of circles are in the ratio of squares of their diameter.

For the proof of this theorem, we need the following:

Lemma 1 (Proposition (No. 1, Book XII of Elements)):

Similar polygons inscribed in circles are to one another as the square of their diame-

ters.
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Lemma 2: Given any circle C and any real number ǫ > 0, there exists a polygon P

inside C such that

a(C) − a(P ) < ǫ.

Proof: Let a(S) denote the area of a region S. On Circle (C), inscribe the square
ADBC. Then

a(ACDB) =
1

2
a(PQRS) >

1

2
a(C).

Thus,

a(C) − a(ACBD) := a(2) <
1

2
a(C).

Next, construct the regular octagon AEDFBGCH. Then

a(∆AHC) =
1

2
a(ACV T ) >

1

2
a(sectorAHC).

By similar arguments, we see that the octagon AEDFBGCH includes not only the square
ADBC but also includes an area which is more than half the area between circle (C)
and the square ACBD. Thus

a(C) − a(AEDFBGCH) <
1

2
a(2) <

1

4
a(C).

A

B

C

D
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G

P
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If we continue this process, by the Principle of Exhaustion, after finite number of steps,
we will get a regular polygon P inside circle (C) such that a(C) - a(P) is smaller than ǫ.

Now let us prove the theorem:

Proof of Theorem: Let circles (1) and (2) have diameters XY and AB, respec-
tively. Let a(F) denote the area of a region F.

X Y
P’

A B
P

(2)

(1)

(3)

Suppose XY 2 : AB2 6= a(1) : a(2). Let there exists a circle (3) such that

XY 2 : AB2 = a(1) : a(3). (∗)

(The existence of the fourth proportional as an area is assumed by Euclid). Then either
a(3) is larger than a(2) or is smaller than a(2). Without loss of generality, let

a(3) < a(2).

Now by Lemma 2, we can find a regular polygon P inside circle (2) such that a(2) - a(P)
is smaller than any given magnitude, say a(2) - a(3). Thus,

a(2) − a(P ) < a(2) − a(3),

7



i.e.,
a(P ) > a(3). (∗∗)

Now inscribe inside circle (1) a polygon P
′

similar to P. Then, by Lemma 1 and (*),

XY 2 : AB2 = a(P
′

) : a(P ) = a(1) : a(3).

Thus,
a(P

′

) : a(1) = a(P ) : a(3).

Since a(P
′

) < a(1), as P
′

is inscribed in circle (1), we get a(P ) < a(3), a contradiction
to (**). Hence the theorem.

An immediate consequence of this theorem is:

Corollary :
Let π denote the area of the unit circle. Then, the area of a circle of radius r is πr2.

Note :
Using similar arguments, Archimedes computed many other areas and volumes. He
also found approximations for the number π by inscribing and circumscribing regular
polygons, e.g., he obtained the relation.

223

71
< π <

22

7
.

Another form of Principle of Exhaustion :
Let a < b. Let 0 < α < 1 be such that when we subtract from b a magnitude more
than 1

2
of b, then the remainder is αb. At the next stage the remainder will be α2b.

After n steps what remains is αnb. By Principle of Exhaustion, there exiss a n such that
αnb < a, i.e., αn < a

b
. Thus, given ǫ = a

b
, there exists a n such that αn < ǫ. In the

modern language we say
lim

n→∞α
n = 0.

This is also known as the Archimedian property of the real numbers. (Greeks did
not have the concept of a real numbers, they knew numbers through magnitudes only.
Real numbers were defined only in 1872 by Richard Dedikind and George Cantor).

Remarks on the Greek methods :
(1) They were rigorous and were derived from well stated axioms.
(2) They successfully avoided the concept of limits.
(3) Concepts like Area, Volumes were not defined, but only methods of computing each
individually was given.
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2 INTEGRATION TILL THE BEGINNING OF 18th

CENTURY

For several centuries, till the 17th century, mathematics had algebraic character and
not much advancement took place in the field of analysis. As far as the integration is
concerned, the main contributors were :

1. Simon Stevin (1548-1620)
2. J. Kepler (1571-1640)
3. B. Cavalieri (1598-1647)
4. Pierre de Fermat (1601-1665)
5. Gregory St. Vincent (1584-1667)
6. John Wallis (1616-1703)
7. Christian Huygens (1629-1695)
8. Pietro Mengoli (1626-1686)
9. Issac Newton (1642-1727)
10. G.W. Leibniz (1646-1716)

John Kepler, the creater of modern astronomy gave the following:

1. Calculation of volume of wine Casks (”Nova stereometria doliorum vinariorum”).
2. Calculation of areas to support the Kepler’s second law. ”The focal radius joining a
planet to the sun sweeps out equal areas in equal times.”

Bonvaventura Cavalier, a student of Galileo gave the following :

Cavalieri’s Principle
If two solids have equal altitudes, and if sections made by planes parallel to the bases

and at equal distances from them are always in a given ratio, then the volumes of the

solids are also in this ratio.

(Note the limiting procedure is hidden in this principle.)

In addition he also devised a method of calculating the volume of a single solid in terms
of its cross-sections. For example consider a pyramid with vertex at A and its base being
a square on BC.
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A x

C

B

a

a

Then its cross-section at a distance x from the vertex A has area x2, so

V olume(P ) =
B

∑

A

x2

The same sum is also the area under the parabola y = x2. To compute
∑B

A x
2, Cavalier

used the method of sums of squares of lines in a triangle, as follows:

a

x

y

.z

A B

CD

P

Q

R

Consider the square ABCD with edge length a divided into two triangles by its diagonal
AC. Let x and y denote the lengths of typical sections PQ and QR of these congruent
triangles, x+ y = a. Then
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B
∑

A

a2 =
B

∑

A

(x+ y)2 =
B

∑

A

x2 +
B

∑

A

y2 + 2
B

∑

A

xy

= 2
B

∑

A

x2 + 2
B

∑

A

xy (By symmetry)

= 2
B

∑

A

x2 + 2
B

∑

A

(
a2

4
− z2).

Since x = a
2
− z and y = a

2
+ z. Thus,

B
∑

A

a2 = 2
B

∑

A

x2 +
1

2

B
∑

A

a2 − 2
B

∑

A

z2.

Hence
1

2

B
∑

A

a2 = 2
B

∑

A

x2 − 2
B

∑

A

z2.

But
∑B

A z
2, by geometry, is 1

4

∑B
A x

2. Thus

1

2

B
∑

A

a2 = 2
B

∑

A

x2 − 1

2

B
∑

A

x2 =
3

2

B
∑

A

x2.

Hence
B

∑

A

x2 =
2

3

1

2

B
∑

A

a2 =
1

3

B
∑

A

a2 =
a3

3
,

since
∑B

A a
2 is the volume of a cube of side a. Hence

∫ a
0 x

2 = a3

3
.

Pierre de Fermat, the well known French mathematician, gave more or less rig-
orous proofs of the general formula:

∫ a

0

xkdx =
ak+1

k + 1

(Of course he assumed the fact that

lim
n→∞

1k + 2k + · · · + nk

nk+1
=

1

k + 1
).
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John Wallis gave integration of fractional powers of x, i.e.,
∫ a
0 x

kdx, when k a frac-
tion.

Gregory St. Vincent showed that the arc below the curve 1

x
is a logarithm.

Contributions of Newton and Leibniz
For both of them, integration is to find the area between the graph of a function y = f(x)
and the x-axis. Let us fix a point x = a and denote Z = F (x), the area under f(x)
between a and x. Both claimed that f(x) is the derivative of F (x).

Newton’s justification
Imagine the segment BD at x moves over the area under consideration by ∆x. Then the
area increases by ∆Z = F (x+ ∆x)− F (x) which is approximately f(x)∆x, and ’in the
limit’ we get

dz

dx
= f(x).

Z=F(x)

y = f(x)

a x x+ x
Figure 1: Newton Method

Leibniz’s argument
He imagines the area as a sum of small rectangles:

Zn := f(x1)∆x1 + · · · + f(xn)∆xn.
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This implies

Zn − Zn−1 = f(xn)∆xn.

As ∆xi → 0, we get dz
dx

= f(x).

The contributions of Newton and Leibniz can be summarized as follows:
1. The recognition of the inverse relationship between integration and differentiation.
2. The recognition of the two types of Calculii as new mathematical subjects and not
merely a set of useful tricks for solving geometric problems.
3. Systematic derivations of the rules of these subjects and realizing the logical difficul-
ties involved in doing so.

The symbol
∫

for integration is due to Leibniz (1686) and the term ’integral’ was given
by Joh. Bernoulli and was published by his brother Jac. Bernoulli in 1690.

a x 1 x 2 x=xn

y = f(x)

Figure 2: Leibniz Method

13



Role played by the concept of a function

Though the notion of ’variables’ have been used by mathematicians over centuries, the
term ’function’ was first introduced by Leibniz. He treated various geometric quantities
associated with a curve, like tangents, normals, etc., being ’functions’ of the curve. The
term ’function’ was taken over by the Bernoulli’s and gradually the function concept lost
its geometric character. Johann Bernoulli later defined it as follows: ”A function of a
variable quantity is a quantity composed in some way or other of this variable quantity
and constants.” Euler in 1748 gave the following definition of a function: ”Every analytic
expression in which apart from a variable quantity all quantities that compose this
expression are constants, is a function.” For example f(x) = x2sin55x + 25x + 10, 0 ≤
x ≤ 3 was a function whereas

g(x) =

{

x+ 2, 1 ≤ x ≤ 2
x2, 2 < x ≤ 3

was not a function.
The discussions between d’Alembert (1747), Euler (1748) and Daniel Bernoulli (1753)
on the solution of the problem of vibrating string started a debate on the concept of
function.
The ’vibrating string problem’ is the following: consider a string of length l put on the
x-axis with ends tied at x = 0 and x = l. If the string is plucked at an initial position
f(a) and allowed to vibrate, its motion is governed by

∂2y

∂t2
= a2

∂2y

∂x2
, (1)

where y(x, t) denotes the position of a point x at time t. The conditions for motion are:

y(0, t) = y(l, t) = 0 ∀ t (boundary conditions),

(initial condition)

{

y(x, 0) = f(x)
∂y

∂t
(x, 0) = 0.

}

for every x.

The solutions proposed for this problem were as follows :

d’Alembert’s solution:
He said that (1) is satisfied by any function of the form:

y(x, t) =
1

2
[φ(x+ at) − ψ(x− at)]
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where φ and ψ are ”arbitrary functions” of a single variable. With the boundary condi-
tions and the initial conditions as above, the solution is

y(x, t) =
1

2
[f(x+ at) − f(x− at)] (2)

Euler’s solution is essentially the same as d’Alembert’s. However, Euler said that φ
can not be any ’arbitrary’ function, but should be an ’analytic’ function. So, he sug-
gested that solution of Alembert will work with different ’analytic’ functions appearing
in (2).

D. Bernoulli gave a totally different solution of (1):

y(x, t) =
∑

ansin
nπx

l
cos

nπat

l
,

and if it has to satisfy boundary conditions also, then

f(x) = y(x, 0) =
∑

an

sinnπx

l
. (3)

Bernoulli believed that all functions f can be expressed as in (3).

Euler’s objections to Bernoulli’s solution:

1. In (3) right hand side is a periodic function while f need not be so.

2. In (3) right hand side is an ’analytic’ function while f need not be so, i.e., f being
the initial position of the string, may not have an analytic expression for it.

This controversy between Euler, Alembert and Bernoulli continued for a decade. As a
result, the following questions became apparent.

1. Does every function has to be given by a single ’analytic expression’ or an ’equa-
tion’?

2. Does every function has to have a graph ?

3. Does every graph represent a function ?

15



No answers to the above questions were provided. Mathematicians started accepting
that a function can be given by different analytic expressions in its domain. However,
it was still believed that a function should have a graph which can be drawn with the
free motion of a hand.

The interest in the concept of a function was revived with the work of Josheph Fourier
(1807) who, while working on problems of heat conduction, said that ”a function is a
relation in terms of variables but it can take any values and need not be governed by
a common law” (i.e., need not be given by a single formula). He further proposed that
any such function defined on [−π, π] can be written as

f(x) =
a0

2
+

∞
∑

n=1

(an cos nx+ bnsin nx), (4)

where

an :=
1

π

∫ π

−π
f(x) cos mx dx

and

bn :=
1

π

∫ π

−π
f(x) sin nx dx.

It may be pointed that integral was not defined precisely (as we understand today), it
was only computed geometrically. When is such a representation (as in (4)) possible,
can be known as Fourier series convergence problem. Fourier’s work raised the
following questions:

1. What is a function ?

2. For which functions integral can be defined ?

3. Which functions have representation as given by (4) ?

Answer to the first question was given by Dirichlet in 1822. We shall come back to it a
little later. The first rigorous definition of integral was given by Cauchy.
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3 CAUCHY’S CONTRIBUTIONS

Cauchy is credited with the founding of the modern age of rigor in mathematics. The
concept of limit, continuity and the definition of integral are due to him. (For him conti-
nuity was what we call ’uniform continuity’ today). Here we talk about his contribution
in integration. Before we proceed further, let us have a look at his biographical sketch.

Augustin-Louis Cauchy (1789-1857)
Cauchy was born in Paris in 1789 and in 1805 he entered the Ecole Polytechnique to
study engineering. Because of his poor health Lagrange and Laplace advised him to de-
vote himself to mathematics. In 1810 upon completing his training in Civil Engineering
from the Ecole des Ponts et Chaussees, he was given commission in the Napoleon’s army
as a military engineer. He left Paris for Cherbourg on his first assignment. Despite a
busy schedule as an engineer, he found time for assisting local authorities in conducting
school examinations and doing research. In 1811 he submitted his first work on the
theory of polyhedra to the Academie des Sciences. The second part of his work was
submitted in 1812. In 1813 he returned to Paris and became a Professor at the Ecole
Polytechnique. Later he taught at the Faculte des Sciences and at the College de France.
In 1830 after Charles was unseated, Cauchy who had sworn a solemn oath of allegiance
to Charles, resigned his professorship and exiled himself to Turin. There he taught Latin
and Italian for some years. In 1833 he tutored the grandson of Charles X at Prague. In
1838 he returned to Paris where he served as professor in several religious institutions.
In 1848 after the revolution, government did away with oaths of allegiance and Cauchy
took over the chair of mathematical astronomy at Faculty de Science at Sorbonne. He
produced over 500 papers in diverse branches of mathematics in the last nineteen years
of his life and died in 1857. He was the pioneer of rigor in mathematical analysis, created
abstract theory of groups and founded the theory of elasticity. He advanced the theory
of determinant and contributed basic theorems in ordinary and partial differential equa-
tions and complex function theory.

Cauchy’s definition of integral (1823)
Let f : [a, b] → IR be a continuous function. Consider any partition P := {a = a0 <
a1 < · · · < an = b} of [a, b]. Choose points ξi ∈ [ai−1, ai], i = 1, 2, · · · , n. Let

S(P, f) =
n

∑

i=1

f(ξi)(ai − ai−1).

We call S(P, f) a Cauchy sum of f with respect to the partition P. This number depends
not only on P, but also on the choice of the points ξi for a given partition P. Cauchy
showed that lim||P ||→0 S(P, f) exists, i.e., there existed a number L such that for every
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a=a a 1 b=a n

y = f(x)

x

y

ξ 1 ξ no

Figure 3: Cauchy Method

ǫ > 0, one can find a δ > 0 such that for every partition P of [a, b] with ||P || < δ and
every Cauchy sum S(P, f), we have

|S(P, f) − L| < ǫ.

L is called the Cauchy integral of f on [a, b] and is denoted by
∫ b
a f(t) dt. Here,

||P || = max | xi − xi−1| {1 ≤ i ≤ n}

Note:

1. For Cauchy, continuity meant ’uniform continuity’, which was only defined in 1871
by Heine. That every continuous function on a closed bounded interval is uniformly
continuous was proved in 1873.

2. Cauchy also assumed the completeness of real numbers, which were defined only
in 1872.

3. He also proved the fundamental theorem of calculus.

Fundamental Theorem of Calculus:
Let f : [a, b] → IR be a continuous function. Then a function F : [a, b] → IR satisfies the

relation.

F (g) − F (x) =
∫ y

x
f(t)dt,∀ a ≤ x < y ≤ b
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iff F
′

(x) = f(x) ∀ x ∈ [a, b].

Consequences :

1. A rigorous definition of area below a curve was given.

2. Fundamental theorem of calculus established rigorously that integration and dif-
ferentiation are inverse of each other and it allowed one to compute integrals.
Fourier-coefficient could be defined more rigorously. We give next some applica-
tions of Cauchy’s integral.

As an application of Cauchy’s integral, we show how elementary transcendental func-
tions can be defined analytically.

Applications of Cauchy’s integral

1. Definition of the Natural logarithmic function:

For x ∈ IR, x > 0 let

log(x) =











∫ x
1

1

t
dt if x > 1

0 if x = 1
∫ x
1

1

t
dt if x < 1

log(x) is called the natural logarithmic function. It is easy to check using thsi basic
results of differential calculus and the Fundamental Theorem of Calculus that the func-
tion log(x) has the following properties :

1. log(1) = 0.

2. log(x) is differentiable and is strictly increasing.

3. log(xy) = log(x) + log(y), log(x/y) = log(x) − log(y) and log(xr) = rlog(x)∀x >
0, r ∈ IR.

4. log(x) is concave.
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1 x

y=1/x

t

y

Figure 4: Natural Logarithmic Function

y

x
e(1,0)

1

y=log(x)

Figure 5: Logarithmic Function
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5. limx→∞ log(x) = +∞, limx→∞ log(x) = −∞.
Thus, log : (0,∞) → (−∞,+∞) is a one-one, onto function.

2. Definition of the Exponential function
Since log : (0,∞) → (−∞,+∞) is a one-to-one function, it has inverse. Let the inverse
function called the exponential function, be denoted by exp : (−∞,+∞) → (0,∞),

exp(x) := y iff log(y) = x, x ∈ IR.

0 1

e

y=exp(x)

y

x

Figure 6: Exponential Function

The exponential function and has the following properties:

1. exp(x) > 0 ∀ x ∈ IR and exp(0) = 1.

2. exp(x) is differentiable and is a strictly increasing convex function.

3. exp(x+ y) = exp(x) exp(y), exp(x− y) = exp(x)/ exp(y).

4. limx→∞ exp(x) = +∞, limx→−∞ exp(x) = 0.

Definition of ’e’-the Euler’s Number
Since, log : (0,∞) → (−∞,+∞) is a one-one onto function, there exists a unique num-
ber x ∈ (0,∞) such that log(x) = 1. This number is denoted by ẽ and is called the
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Euler’s number. Thus log(e) = 1.

Note: The Euler’s number e can also be defined by

e := lim
n→∞(1 +

1

n
)n.

Let us assume this limit exists and call it ẽ. Then, log being differentiable (hence
continuous also), we have

log(ẽ) = lim
n→∞ log[(1 +

1

n
)n]

= lim
n→∞

log(1 + 1

n
)

1

n

=
d

dx
(log(x))|x=1

= 1.

Hence ẽ = e, since log is one-one.

4. Definition of the number π

In our calculus books we define trigonometric functions geometrically as a periodic func-
tion of period 2π, where π is the area of the unit circle. We define the limit by:

lim
x→0

sinx

x
= 1.

This limit is in turn used to compute the derivative of the sine function, namely the
cosine function. Using this together with the trigonometric identities, one computes the
area A of the unit circle, via integration, to be

A = 4
∫

1

0

√
1 − x2dx = π.

Thus, we calculate what we started with (which we assumed we know) and feel satisfied.
In mathematics this presents a logical fallacy, which should be removed. Integration
helps us to do so. We first define the trigonometric functions.

5. Definition of trigonometric functions and the number π
Consider the function

arc sin : [−1,+1] → IR
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defined by

arc sin(x) :=















∫ x
0

1√
1−t2

dt for −1 < x < 1

limx→1,x<1

∫ x
0

1√
1−t2

dt for x = 1

limx→1,x<1

∫ x
0

1√
1−t2

dt for x = −1

Clearly, arc sin(x) is well defined for |x| < 1. Since for 0 ≤ t < 1,

0 <
1√

1 − t2
=

1√
1 − t

√
1 + t

<
1√

1 − t
,

for 0 < x < 1, we have
∫ x

0

1√
1 − t

dt = 2 − 2
√

1 − x ≤ 2,

thus g(x) :=
∫ x
0

1√
1−t2

dt ≤ 2∀x < 1 and g(x) is increasing as x → 1. Thus, arc sin(1) is

well-defined. Similarly arc sin(−1) is well-defined. It has the following properties:

Properties :

1. arc sin(x) is an odd function.

2. Clearly, it is differentiable on (−1,+1), by the fundamental theorem of calcu-
lus, and is continuous on [−1,+1], by definition. Its derivative is 1√

1−t2
> 0 for

t ∈ (−1,+1) and hence it is a strictly increasing function.

Let us define the number π ∈ IR by

π := 2 arc sin(1). (∗)

Then,

arc sin(1) =
π

2
> arc sin(0) = 0,

and
arc sin(−1) = −π

2
.

Thus, arc sin : [−1,+1] → [−π
2
, π

2
] is a one-one, onto function.

The inverse function is denoted by sin (called sine) and is given by

sin : [−π
2
,
π

2
] → [−1,+1].
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+1−1

y=arc sin(x)

π

π

/2

/2−

+

y

x

Figure 7: Arc Sine Function

π

+1

−1

y=sin(x)

−π/2

+π/2

y

x

Figure 8: Sine Function
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It follows by the inverse function theorem that sin is a continuous, monotonically in-
creasing function. Further for −π/2 < x < π/2, it is differentiable and

(sin x)
′

=
√

1 − sin2x.

Using Lagrange Mean Value Theorem, it is easy to show that (sin(x))
′

= 0 for x = π/2
and x = −π/2. Hence

(sin x)
′

=
√

1 − sin2x for every x ∈ [−π/2, π/2].

We extend this function to [−π, π] as follows :

sin(x) :=

{

sin(π − x) if x ∈ (π
2
, π]

sin(x+ π) if x ∈ (−π,−π
2
].

Now, extend this function to IR periodically with period 2π. It is easy to check that it is
a differentiable function and has the usual properties. We can define the trigonometric
cosine function to be the derivative of this function. Other trigonometric functions can
be defined similarly and the usual trigonometric identities can be proved.

Claim : π, as defined by (*) is the area of the unit circle, as computed via integration:

A = 4
∫

1

0

√
1 − x2dx = π.

Exercise : Assuming that the perimeter of a circle is proportional to its radius, show
that the perimeter of the unit circle is 2π.

Exercise : Show that sinx has derivative
√

1 − sin2x.

Contribution of Dirichlet (1822)

Even though Cauchy’s notion of integral gave a mathematical meaning to the Fourier-
coefficients an, bn it was still believed that a function can have only finite number of
discontinuities (and hence the notion of integral can be extended to such function).
Dirichlet, who was analyzing the problem of convergence of Fourier-series, gave example
of a function f : [0, 1] → IR defined as follows :

f(x) =

{

1 if x is rational
0 if x is irrational

This function, called the indicator function on the rationals in [0, 1] has infinite
number of discontinuities in every interval. Thus, here was an example of a function
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which was neither defined by a formula, nor its graph could be drawn. Also since it
bounds no area, its Fourier-coefficient by the Cauchy’s method can not be defined. As
a result, the need was felt to treat continuous and discontinuous functions with equal
vigour. Also it was believed that the convergence of Fourier-series problem could be
solved for a wider class of functions if the notion of integral could be extended from
continuous functions to a wider class of functions. This was done by Riemann (1826-
1866) in 1854.
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4 RIEMANN’S CONTRIBUTIONS:

B. Riemann who was interested in analyzing the ’convergence of Fourier-series’ problem
realized the need to define the notion of integral for functions which are not necessarily
continuous. He extended the definition of integral by realizing that to define S(P, f),
it was not necessary to have the continuity of the function, only f bounded is enough.
Thus, he defined S(P, f) for a bounded function f , and called f to be integral if
lim||p||→0 S(P, f) := L existed. A more elegant and geometric definition of Riemann-
integral was given by Darboux in 1875 in terms of the upper and lower sums.

Riemann not only proved that the class of functions which are integrable is quite large,
he showed that it is much larger than the class of piecewise continuous functions. He
gave example of a function f : IR → IR which had infinite number of discontinuities in
each subinterval of [a, b], yet was integrable in [a, b]. (Using this function Hankel in
1871 constructed a continuous function which was not differentiable at an infinite set of
points. In 1872 Karl Weierstrass surprised the mathematicians by producing an example
of a function which was continuous every where but was differentiable nowhere.

Example of a function having infinite number of discontinuities in every
subinterval and yet being Riemann integrable :
Consider the function f : [0, 1] → [0, 1] defined by

f(x) :=

{

0 if x is an irrational in [0, 1] or x = 0
1/q if x = p/q is a rational in lowest terms.

It is not very difficult to show that f is continuous at every irrational and discontinuous
at every rational in [0, 1]. The graph of f is :
Clearly, for any partition P of [0, 1], L(P, f) = 0, because every subinterval will have at
least one irrational. Next, let ǫ > 0 be arbitrary. Consider the set {x ∈ [0, 1]|f(x) ≥ ǫ

2
}.

This is a finite set. We can cover these points by intervals of total length less than ǫ
2
.

Let these intervals be [xk, yk], 1 ≤ k ≤ n with yk < xk+1∀k. Consider the partition

P = {0 = x0 < x1 < y1 < x2 < · · · < xn < yn ≤ xn+1 = 1}.

Let Mk = sup{f(x)|xk ≤ x ≤ yk}, M̃k = sup{f(x)|yk−1 ≤ x ≤ xk}. Then each Mk ≤ 1
and M̃k ≤ ǫ/2. Further

U(P, f) =
n

∑

k=1

Mk(yk − xk) +
n+1
∑

k=1

M̃k(xk − yk−1)

27



1/8 1/4 3/8 1/2 5/8 3/4 7/8

1/4

3/8

1/2

1/8

Figure 9: Example of Riemann Function having infinite number of discontinuities

≤
n

∑

k=1

(yk − xk) +
ǫ

2

n+1
∑

k=1

(xk − yk−1)

≤ ǫ

2
+
ǫ

2
= ǫ.

Hence,
U(P, f) − L(P, f) ≤ ǫ.

Thus, f is Riemann integrable.

One can in fact characterize the class of Riemann-integrable functions. A bounded
function f : [a, b] → IR is Riemann-integrable iff f is continuous ”almost everywhere”.

5 Beyond Riemann-integral

Though Riemann integral gave hope to attack the convergence of Fourier-series problem,
the difficulties became obvious.

Drawbacks of the Riemann-integral

(i) The first and the foremost drawback is that the Fundamental Theorem of Calculus
is no longer valid for Riemann-integrable functions. For details see Rana[1].
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(ii) The second main drawback of Riemann integral is its behavior with respect to
limits. Let {fn}n≥1 be a sequence of Riemann-integrable functions such that
fn(x) → f(x) ∀x ∈ [a, b], one cannot say that

∫ b
a fndx → ∫ b

a fdx. One has to
put strong conditions (like fn → f uniformly) to ensure that limn→∞(

∫ b
a fn dx) =

∫ b
a (limn→∞ fn) dx.

(iii) Consider the space C[a, b], the space of all continuous functions on [a, b]. For
f, g ∈ C[a, b], let

d(f, g) =
∫ b

a
|f(x) − g(x)| dx,

called the distance between f and g.

g(x)

f(x)

a b

y

x

Figure 10: Drawback of Riemann Function

d(f, g) has the following properties:

(a) d(f, g) ≥ 0, iff f = g.

(b) d(f, g) = d(g, f)∀f, g ∈ C[a, b].

(c) d(f, g) ≤ d(f, h) + d(h, g),∀f, g, h ∈ C[a, b].

We know that every f ∈ C[a, b], is Riemann-integrable. The question arises:
is every Cauchy sequence in C[a, b] convergent ? In some sense ℜ[a, b] is not
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complete under the (pseudo) metric d. One asks the following question: What is
its completion ?

Above questions along with the need to analyze the ’convergence of Fourier-series’
problem motivated the future development of the notion of integral. Efforts of Camille
Jordan, Emile Borel, Rene Baire and others culminated in the works of Henri Lebesgue
who in 1902 announced a generalization of Riemann-integral, which is now known as
Lebesgue Integral. For details, see Rana[2]. There is another generalization of Rie-
mann integral called Henstock Integral.For details see Bartle[1].
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